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Abstract

In this work, we address the problem of 3D object detection from point cloud
data in real time. For autonomous vehicles to work, it is very important for the
perception component to detect the real world objects with both high accuracy
and fast inference. We propose a novel neural network architecture along with
the training and optimization details for detecting 3D objects using point cloud
data. We present anchor design along with custom loss functions used in this work.
A combination of spatial and channel wise attention module is used in this work.
We use the Kitti 3D Bird’s Eye View dataset for benchmarking and validating
our results. Our method surpasses previous state of the art in this domain both in
terms of average precision and speed running at > 30 FPS. Finally, we present the
ablation study to demonstrate that the performance of our network is generalizable.
This makes it a feasible option to be deployed in real time applications like self
driving cars.

1 Introduction

A lot of work has been done in 2D object detection using convolutional neural networks. The object
detection algorithms can be broadly grouped into the following two types:

1. Single stage detector - Yolo (Redmon et al., 2016), SSD (Liu et al., 2016).

2. Two stage detector - RCNN (Girshick et al., 2014), Fast RCNN (Girshick, 2015), Faster RCNN
(Ren et al., 2015).

The difference between the two is that in the two stage detectors, the first stage uses region proposal
networks to generate regions of interest and the second stage uses these regions of interest for object
classification and bounding box regression. These are proven to have achieved better accuracy than
the one stage architecture but comes at a tradeoff of more computational burden and time taken.
On the other hand, a single stage detector uses the input image to directly learn the class wise
probability and bounding box coordinates. Thus these architectures treat the object detection as a
simple regression problem and thus are faster but less accurate.

There has also been a lot of work done on 3D object detection. Some of them use a camera based
approach using either monocular or stereo images. Also work has been done by fusing the depth
information on RGBD images taken from the camera. The main problem with camera based approach
is the low accuracy achieved. Therefore lidar data has been proven to be a better alternative achieving
higher accuracy and thus safety which is a primary concern for self driving cars. The challenge with
using lidar data is that it produces data in the form of point clouds which have millions of points thus
increasing the computational cost and processing time.
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Point cloud data are of many types, of which the main type is 3D voxel grid. However, monocular
3D object detection is a difficult problem due to the depth information loss in 2D image planes.
Recent networks have been proposed to first predict the pixel-level depth and convert the monocular
image to 3D point cloud representations. These methods although achieves good performance but it
introduces additional expensive computational cost for predicting high-resolution depth maps from
images, making them challenging to be deployed in real time settings like self driving cars.

In this work, our approach uses only the bird’s eye view for 3D object detection in real time. The
context of our work is in self driving cars but can be deployed in other settings as well. To validate
our work, we benchmark our results on the publicly available 3D Kitti dataset (Geiger et al., 2012).
We use spatial and channel attention modules in one branch for finding out where is an informative
part in the image and finding out what feature is meaningful in the image respectively. The second
branch locates the 2d bounding box co-ordinates while the third branch is used to get the deviations
between the predicted and actual co-ordinates. The individual features are summed to give the refined
3d bounding box co-ordinates. For the evaluation metric, we use the class wise average precision.
Our work beats the previous state of the art approaches for 3D object detection while also running at
greater than 30 FPS. We also further show the learning and optimization aspects along with ablation
study of this approach and present how it could potentially be generalized to other real world settings.

A sample of the predicted 3D detection from the KITTI validation dataset is shown in Figure 1:

Figure 1: 3D detection from the KITTI validation dataset projected onto an image

2 Related Work

Recently there have been a surge of papers on 3D object detection from various kinds of data like
LIDAR, stereo etc. VOTE 3D (Qi et al., 2019) uses a sliding window on a 3D voxel grid to detect
objects. The pre-trained model is fed to a SVM classifier later. VELOFCN (?) projects 3D point
cloud data to a perspective in the front view and gets a 2D depth map. The objects are detected by
running a convolutional neural network on the depth map. MV3D (Qi et al., 2018) architecture also
used a similar approach by combining the features extracted from multiple views like front view,
birds eye view and camera view. These extracted features are passed through a CNN to detect 3D
objects.

PointNet (Qi et al., 2017) proposed an end-to-end classification neural network that directly takes
a point cloud as input without any preprocessing and outputs class scores. (Zhou and Tuzel, 2018)
subdivides the point cloud into 3D voxels and then transforms points within each voxel to a trainable
feature vector that characterizes the shape information of the contained points. The representation
vectors for each voxel stacks together and passes to a region proposal network to detect the objects.
(Chen et al., 2020a) proposed and anchor free method using firing of different hotspots. (Ge et al.,
2020) used anchor free one stage network for 3d object detection. Pairwise spatial relationship of
features was used for monocular 3D object detection (Chen et al., 2020c). A learnable depth guided
convolution was used to tackle monocular 3D object detection problem (Ding et al., 2020).

Triple attention module was used (Liu et al., 2020) for 3d object detection from point clouds. A
comprehensive study of various localization errors involved while detecting 3d objects was presented
(Ma et al., 2021). A new voting algorithm was individually proposed for improving the robustness
of 3d object detector (Qi et al., 2020) and (Xie et al., 2020). (Zhou et al., 2020) used an end to end
learnable network using multi view feature fusion from lidar data. (Vora et al., 2020) similarly used
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sequential fusion approach. A more generalizable method taking into account different shapes and
sizes of objects present in image was proposed by (Zhang et al., 2021). Both 3d object detection and
tracking problem was tackled using a single network (Yin et al., 2021).

We summarize our main contributions as follows:

• A novel approach using spatial and channel attention mechanism to simultaneously detect and
regress 3D bounding box over all the objects present in the image.

• A thorough analysis of backbone, optimization, anchors and loss function used in our network
which is end to end trainable.

• Evaluation on the KITTI dataset shows we outperform all previous state-of-the-art methods in terms
of average precision while running at >30 FPS.

3 Model

3.1 Dataset

For this work, we have used the Kitti dataset (Geiger et al., 2012) which contains LIDAR data taken
from a sensor mounted in front of the car. Since the data contains millions of points and is of quite
high resolution, processing is a challenge especially in real world situations. The task is to detect and
regress a bounding box for 3D objects detected in real time. The dataset has 7481 training images
and 7518 test point clouds comprising a total of labelled objects. The object detection performance
is measured through average precision and IOU (Intersection over union) with threshold 0.7 for car
class. The 3D object KITTI benchmark provides 3D bounding boxes for object classes including
cars, vans, trucks, pedestrians and cyclists which are labelled manually in 3D point clouds on the
basis of information from the camera. KITTI also provides three detection evaluation levels: easy,
moderate and hard, according to the object size, occlusion state and truncation level. The minimal
pixel height for easy objects is 40px, which approximately corresponds to vehicles within 28m. For
moderate and hard level objects are 25px, corresponding to a minimal distance of 47m.

3.2 Problem Definition

Given a RGB images and the corresponding camera parameters, our goal is to classify and localize
the objects of interest in 3D space. Each object is represented by its category, 2D bounding box B2D,
and 3D bounding box B3D. B2D is represented by its center ci = [x0, y0]2D and size [h0, w0]2D in
the image plane, while B3D is defined by its center [x, y, z]3D, size [h,w, l]3D and heading angle γ
in the 3D world space.

The 3D bounding boxB3D is the final goal of prediction. The first task is 2D object detection in which
the goal is to predict the 2D bounding box B2D of the object and its class. B2D = (w2D, h2D, ub, vb)
where (w2D, h2D) indicates the size of B2D and (ub, vb) represents the center of B2D on the image
plane.

3.3 Spatial Attention Module

The spatial attention module is used for capturing the spatial dependencies of the feature maps. The
spatial attention (SA) module used in our network is defined below:

fSA(x) = fsigmoid (W2 (fReLU (W1(x)))) (1)

where W1 and W2 denotes the first and second 1× 1 convolution layer respectively, x denotes the
input data, fSigmoid denotes the sigmoid function, fReLU denotes the ReLu activation function.

The spatial attention module used in this work is shown in Figure 2:
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Figure 2: Illustration of our spatial attention module
.

3.4 Channel Attention Module

The channel attention module is used for extracting high level multi-scale semantic information. The
channel attention (CA) module used in our network is defined below:

fCA(x) = fsigmoid(W2(fReLU (W1f
1
AvgPool(x)))) (2)

where W1 and W2 denotes the first and second 1 × 1 convolution layer, x denotes the input data.
f1AvgPool denotes the global average pooling function, fSigmoid denotes the Sigmoid function, fReLU
denotes ReLU activation function.

The channel attention module used in this work is shown in Figure 3:

Figure 3: Illustration of our channel attention module
.

3.5 Network Architecture

We divide the point cloud data into 3D voxel grid cells. Our CNN backbone takes as input the
image in the form of voxel and outputs a feature vector. We use Resnet as backbone for our network.
Residual blocks are used for locating the 2d bounding box co-ordinates which is then propagated to
a Roi Align operator which is then sent to a fully connected layer. In parallel, spatial and channel
attention mechanism are used for finding out where is an informative part in the image and finding out
what feature is meaningful given in the image. the individual features are summed up which is in turn
summed up with the first block to produce the 3d bounding box co-ordinates. In parallel, a third block
uses Roi Align and fully connected layers to find out the deviations between the actual and predicted
co-ordinates. Anchors are used in these deltas blocks to adjust the coordinates according to the size
and shape of the object detected. This block is learnable thus improving the hyper-parameters in
every iteration. The learned deviations are finally summed up with the 3d bounding box co-ordinates
to give the refined 3d bounding box co-ordinates.

The residual blocks are made up of: a fully connected layer followed by a non linearity activation
function which is ReLU used in this case and a batch normalization layer. These layers are used
for transforming each point in the voxel to a point wise feature vector. Element wise max-pooling
layer is also used which extracts the maximum value from all the neighbouring pixel values when
the filter is applied on the image. This operation is used for getting the locally aggregated features.
Also a point wise concatenation operator is used which concatenates each point wise feature vector
with the locally aggregated features. For our detector there are in total 7 parameters - three for the
offset center coordinates, three for the offset dimensions and the last is for offset rotation angle. The
network architecture is shown in Figure 4:
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Figure 4: Illustration of our network architecture. SA denotes spatial attention module, CA denotes
channel attention module, FC denotes fully connected layer and + denotes summation operator.

4 Experiments

4.1 Anchors

Anchors are very important for efficient object detection. These are basically prior beliefs containing
information of the size for the detected object, its position is the image, its pose, its orientation etc.
Anchors of multiple shape, size are more stable, also helps in reducing the computational burden and
time taken by the model. We have chosen two anchors for each of the classes as shown in Table 1,
Table 2 and Table 3 respectively:

Table 1: Car anchors

Height(m) Width(m) Length(m) Rotation(Theta)

1.6 1.6 4 0
1.6 1.6 1.6 90

Table 2: Pedestrian anchors

Height(m) Width(m) Length(m) Rotation(Theta)

1.7 0.5 0.7 0
1.7 1.5 0.7 90

Table 3: Cyclist anchors

Height(m) Width(m) Length(m) Rotation(Theta)

1.6 0.7 2 0
1.6 0.7 2 90

4.2 Loss Functions

A vector s = (x, y, z, l, h, w, θ) represents 3D bounding box center coordinates, height, width,
length and yaw respectively. The geometric relations between various parameters is illustrated in the
equation below where s represents the ground truth vector and a represents the anchor vector. The
localization regression between ground truth and anchors are defined using set of Equations 3-10:

∆x =
xs − xa√
l2 + w2

(3)
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∆zb = zs −
hs
2
− za +

ha
2

(4)

∆y =
ys − ya√
l2 + w2

(5)

∆zt = zs +
hs
2
− za −

ha
2

(6)

∆l = log
ls
la

(7)

∆w = log
ws
wa

(8)

∆ζ = |sin (θs − θa)| (9)

∆η = cos (θs − θa) (10)

Since the angle localization loss cannot distinguish the bounding boxes which are flipped, we
use a softmax classification loss as shown for both positive and negative anchors. For the object
classification, we have used focal loss as shown in Equation 11 and Equation 12 respectively:

Lpos = −αa (1− pa)
γ

log pa (11)

Lneg = −αa (1− pa)
γ

log pa (12)

We used Intersection Over Union (IOU) for evaluating the performance of our network. All the
positive anchors have an IOU value above 0.60 while those with less than 0.45 are treated as negative
anchors. We used binary cross entropy loss for detection and a variant of huber loss for regression.

Let i and j denote the positive and negative anchors and let p denote the sigmoid activation for
the classification network. Let pos represent the positive regression anchors and neg the negative
regression anchors. The individual loss terms can be denoted using set of Equations 13-15.

L1 =
1

N

∑
i

Lpos (pposi , 1) (13)

L2 =
1

N

∑
j

Lneg
(
pnegj , 0

)
(14)

L3 =
1

N

∑
k

(Lr (l, l∗) + L (h, h∗) + Lc (w,w∗)) (15)

The overall loss function is shown in Equation 16:

Ltotal = αL1 + βL2 + γL3 (16)

Here α, β and γ are the hyper-parameters with values set as 0.5, 0.5 and 1.0 respectively.
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4.3 Evaluation Metrics

We use the Average Precision with 40 recall positions (AP40) under three difficult settings (easy,
moderate, and hard) for those tasks. We present the performances of the Car, Pedestrian and Cyclist
categories as reference. The default IoU threshold values are 0.7, 0.5, 0.5 for these three categories
respectively. Each manually annotated object is divided into easy, moderate, and hard level according
to the occlusion, truncation, and box height. The metrics used extensively in the literature are Average
precisions (AP) on the car class for bird’s-eye-view (BEV) and 3D boxes with 0.5/0.7 IoU thresholds.
We present both AP11 and AP40 results to make comprehensive comparisons as has been studied in
literature.

4.4 Implementation Details

We train our model on a GTX 1080Ti GPU with a batch size of 16 for 100 epochs. We use Adam
optimizer with an initial learning rate of 0.001, and decay it by ten times at every 100 epochs. The
weight decay is set to 0.0001. We use Non-Maximum Suppression (NMS) on center detection results.
We use 3D bounding boxes score of center detection as the confidence of predicted results. We
discard predictions with confidence value less than 0.1. All input images are padded to the same
size of 384 × 1280. The prediction head of the backbone consists of one 3 × 3 × 256 conv layer,
BatchNorm, ReLU, and 1× 1× op conv layer where op is the output size.

5 Results

We report our results of the Car category on KITTI test set as shown in Table 4. Overall, our method
achieves superior results over previous methods. Compared with the methods with extra data, our
network still get comparable performances, which further proves the effectiveness of our model. Our
method is also much faster than most existing methods, allowing for real-time inference which is
important in the context of autonomous driving.

Table 4: Quantitative results for Car on KITTI test sets, evaluated by AP3D. “Extra” lists the required
extra information for each method. We divide existing methods into two groups considering whether
they utilize extra information and sort them according to their performance on the moderate level of
the test set within each group. The three sets of Easy, Mod and Hard denotes Val AP11, Val AP40

Test AP40 respectively.

Method Extra Time(ms) Easy1 Mod1 Hard1 Easy2 Mod2 Hard2 Easy3 Mod3 Hard3

MonoPSR depth, LiDAR 120 12.75 11.48 8.59 - - - 10.76 7.25 5.85
UR3D depth 120 28.05 18.76 16.55 23.24 13.35 10.15 15.58 8.61 6.00
AM3D depth - 32.23 21.09 17.26 28.31 15.76 12.24 16.50 10.74 9.52
PatchNet depth - 35.10 22.00 19.60 31.60 16.80 13.80 15.68 11.12 10.17
DA-3Ddet depth, LiDAR - 33.40 24.00 19.90 - - - 16.80 11.50 8.90
D4LCN depth - 26.97 21.71 18.22 22.32 16.20 12.30 16.65 11.72 9.51
Kinem3D multi-frames 120 - - - 19.76 14.10 10.47 19.07 12.72 9.17
FQNet - - 5.98 5.50 4.75 - - - 2.77 1.51 1.01
MonoGRNet - 60 13.88 10.19 7.62 - - - 9.61 5.74 4.25
MonoDIS - 100 18.05 14.98 13.42 - - - 10.37 7.94 6.40
M3D-RPN - 160 20.27 17.06 15.21 14.53 11.07 8.65 14.76 9.71 7.42
MonoPair - 57 - - - 16.28 12.30 10.42 13.04 9.99 8.65
RTM3D - 55 20.77 16.86 16.63 - - - 14.41 10.34 8.77
Movi3D - 45 - - - 14.28 11.13 9.68 15.19 10.90 9.26
Zhang et al. (2021) - 35 28.17 21.92 19.07 23.64 17.51 14.83 19.94 13.89 12.07
AA3DNet - 26 30.22 22.54 18.38 24.01 17.81 14.31 21.62 14.90 11.82

We present our model’s performance on the KITTI validation set in Table 5. Our approach shows
better performance consistency between the validation set and test set. This indicates that our method
has better generalization ability, which is important in autonomous driving.

Our results are considerably better than the previous state of the art approaches.

5.1 Average Precision

The ideal value of precision and recall is 1. Since it is not possible to get perfect values, the closer the
metrics ie precision and recall is to 1, the better our model is performing, It’s often seen that there is
a tradeoff between precision and recall ie if we are optimizing for precision, recall value gets less
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Table 5: Performance of the Car category on the KITTI validation set. Methods are ranked by
moderate setting (same as KITTI leaderboard). We highlight the best results in bold. The four
sets of Easy, Mod and Hard denotes 3DIOU=0.7, BEVIOU=0.7, 3DIOU=0.5 and BEVIOU=0.5
respectively.

Method Easy1 Mod1 Hard1 Easy2 Mod2 Hard2 Easy3 Mod3 Hard3 Easy4 Mod4 Hard4

CenterNet 0.60 0.66 0.77 3.46 3.31 3.21 20.00 17.50 15.57 34.36 27.91 24.65
MonoGRNet 11.90 7.56 5.76 19.72 12.81 10.15 47.59 32.28 25.50 48.53 35.94 28.59
MonoDIS 11.06 7.60 6.37 18.45 12.58 10.66 - - - -
M3D-RPN 14.53 11.07 8.65 20.85 15.62 11.88 48.53 35.94 28.59 53.35 39.60 31.76
MonoPair 16.28 12.30 10.42 24.12 18.17 15.76 55.38 42.39 37.99 61.06 47.63 41.92
(Ma et al., 2021) 17.45 13.66 11.68 24.97 19.33 17.01 55.41 43.42 37.81 60.73 46.87 41.89
AA3DNet 18.06 14.27 11.51 25.68 19.83 16.64 57.24 44.90 37.15 62.18 47.55 41.24

and if we are trying to improve recall, precision value becomes less. So our task is to balance both
and note that threshold point. Average precision is the average value of precision for the sampled
points at various recall threshold values. The precision - recall curve for 3D object detection for the 3
classes i.e. cars, pedestrians and cyclists for all the three categories i.e. easy, moderate and hard are
shown in Figure 5. The closer the curve is to (1,1), the higher performance of the model is.

Figure 5: Precision-recall curve for 3D detection in a) Cars b) Pedestrian c) Cyclists.

Finally we present the results for 3D object detection results on KITTI validation set in Figure 6.
The ground truth bounding boxes are shown in blue and the predicted bounding boxes are shown in
orange.

Figure 6: Predicted 3D bounding boxes are drawn in orange, while ground truths are in blue.

Note that our model is based only on LiDAR data. For better visualization the 3D bounding boxes
are projected on to the bird’s eye view and the images.

5.2 Ablation Study

The compared results with different backbones on Average Precision metric is shown in Table 6:

The best results are achieved using ResNet50 as the backbone on our network.

A study of with and without using channel and spatial attention module on Average Precision metric
is shown in Table 7:
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Table 6: Ablation study of different backbone networks on AP3D (IoU=0.3).

Backbone Network Easy Moderate Hard

VGG16 53.68 41.45 34.08
InceptionV3 54.32 41.60 34.66
DenseNet169 54.26 40.04 35.06
ResNet50 56.16 42.61 35.36

Table 7: Ablation study using variations of spatial and channel attention modules on AP3D (IoU=0.3).

Attention Module Easy Moderate Hard

No attention 53.59 40.06 32.18
Only SA 55.05 42.06 34.58
Only CA 55.51 40.49 34.46
Both 56.16 42.61 35.36

The best results are achieved using both spatial and channel attention modules in our network.

A study of using individual loss function terms used while training our network on Average Precision
metric is shown in Table 8:

Table 8: Ablation study using individual loss function terms on AP3D (IoU=0.3).

L1 L2 L3 Easy Moderate Hard

× × X 44.50 32.33 29.10
X X × 52.72 40.59 33.71
X X X 56.16 42.61 35.36

The best results are achieved using all the loss functions ie L1, L2 and L3 combined.

6 Conclusions

In this paper, we proposed a real time 3D object detection network using spatial and channel attention
mechanism using LIDAR point cloud data. For making efficient computation, our architecture uses a
single stage type neural network with bird’s view representation. We evaluate our network on the
KITTI benchmark dataset and show that our approach outperforms previous state of the art methids.
As for the evaluation metric, we chose class wise average precision. The model runs at faster than 30
FPS and hence can be used in autonomous driving applications where safety is a major challenge. In
the future, we would be interested in studying attention mechanism in the context of 3D semantic
segmentation.
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